Evaluating the Role of Microbial Internal Storage Turnover on Nitrous Oxide Accumulation During Denitrification
نویسندگان
چکیده
Biological wastewater treatment processes under a dynamic regime with respect to carbon substrate can result in microbial storage of internal polymers (e.g., polyhydroxybutyrate (PHB)) and their subsequent utilizations. These storage turnovers play important roles in nitrous oxide (N2O) accumulation during heterotrophic denitrification in biological wastewater treatment. In this work, a mathematical model is developed to evaluate the key role of PHB storage turnovers on N2O accumulation during denitrification for the first time, aiming to establish the key relationship between N2O accumulation and PHB storage production. The model is successfully calibrated and validated using N2O data from two independent experimental systems with PHB storage turnovers. The model satisfactorily describes nitrogen reductions, PHB storage/utilization, and N2O accumulation from both systems. The results reveal a linear relationship between N2O accumulation and PHB production, suggesting a substantial effect of PHB storage on N2O accumulation during denitrification. Application of the model to simulate long-term operations of a denitrifying sequencing batch reactor and a denitrifying continuous system indicates the feeding pattern and sludge retention time would alter PHB turnovers and thus affect N2O accumulation. Increasing PHB utilization could substantially raise N2O accumulation due to the relatively low N2O reduction rate when using PHB as carbon source.
منابع مشابه
Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification.
The kinetics of denitrification and the causes of nitrite and nitrous oxide accumulation were examined in resting cell suspensions of three denitrifiers. An Alcaligenes species and a Pseudomonas fluorescens isolate characteristically accumulated nitrite when reducing nitrate; a Flavobacterium isolate did not. Nitrate did not inhibit nitrite reduction in cultures grown with tungstate to prevent ...
متن کاملEffect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions
Due to its high global warming potential, nitrous oxide (N(2)O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N(2)O production. In this study, two lab-scale sequencing batch reactors were operated with deammonification biomass to investigate th...
متن کاملChallenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: mass transfer limitation and nitrous oxide production.
The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of...
متن کاملEvaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment.
The accumulation of the denitrification intermediates in wastewater treatment systems is highly undesirable, since both nitrite and nitric oxide (NO) are known to be toxic to bacteria, and nitrous oxide (N2O) is a potent greenhouse gas and an ozone depleting substance. To date, two distinct concepts for the modelling of denitrification have been proposed, which are represented by the Activated ...
متن کاملAccumulation of intermediate denitrifying compounds inhibiting biological denitrification on cathode in Microbial Fuel Cell
BACKGROUND Bio-cathode denitrifying microbial fuel cell (MFC) is a promising bio-electrochemical system (BES) where both the reactions of anodic oxidation and cathodic reduction are catalyzed by microorganisms. In this nitrogen removal process, a complete biological denitrification from nitrate (NO3 (-)) to molecular nitrogen (N2) was achieved by four reduction steps, forming nitrite (NO2 (-)),...
متن کامل